Skip to main content

Heart of brightness: Astronomers map the inside of a supernova

A supernova is easily the most brilliant event in the universe. At the end of its short life, a massive star erupts with such intensity that it can outshine its home galaxy, create new elements, and form new molecules through the destruction of others.

The first recorded observation of a supernova dates all the way back to 185 AD, but it wasn’t until recently that scientists have been able to map what occurs at the core of these explosions. Now, thanks to computer models of a supernova first witnessed 30 years ago, astronomers at National Radio Astronomy Observatory (NRAO) have been able to depict the inside of this event.

Knots of new molecules in heart of exploded star

“Supernovae explosions involve a lot of physics under extreme conditions,” Remy Indebetouw, an astronomer at the University of Virginia and NRAO, told Digital Trend. “Vast quantities of neutrinos; nuclear fusion and rapid decay; fluid and plasma dynamics and instabilities. It has been a great challenge to model them, and for many years astronomers had difficulties getting stars to explode at all in computer simulations.”

Recommended Videos

Although supernovae are relatively common within our observable universe, they still only occur every 50 years on average in galaxies as big as the Milky Way. That means scientists don’t often get the chance to study such an event from the initial explosion to its end, when it cools down and new molecules begin to form.

Knots of new molecules in heart of exploded star

Indebetouw and his team used data from Chile’s Atacama Large Millimeter Array (ALMA) to study a supernova named SN 1987A, which occurred within a dwarf galaxy some 163,000 light-years away. Collected and analyzed over three decades, the ALMA data gave unprecedented detail about the star’s violent death, including the emergence of elements like carbon, oxygen, and nitrogen, and the formation of molecules like silicon monoxide (SiO) and carbon monoxide (CO).

“Supernovae are rare but very energetic, and disrupt vast parts of space around them,” Indebetouw said. “They are the source of most of the atoms like carbon and oxygen that eventually form planets and people, and astronomers have evidence that a supernova exploded near enough to our own solar system that some of the material from that explosion forms part of Earth. It’s really important to understand how, when, and where supernovae go off to understand how, when, and where stars, planets, and life forms in galaxies.”

Though scientists had previously estimated how and where molecules would combine within supernovae, this marks the first time data was captured in resolution high enough to confirm the test models. Two papers detailing the research have been published in the journals Astrophysical Journal Letters and Monthly Notices of the Royal Astronomical Society.

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
See the majestic Southern Pinwheel Galaxy in this Dark Energy Camera image
Twelve million light-years away lies the galactic masterpiece Messier 83, also known as the Southern Pinwheel Galaxy. Its swirling spiral arms display a high rate of star formation and host six detected supernovae. This image was captured with the Department of Energy-fabricated Dark Energy Camera, mounted on the U.S. National Science Foundation Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF NOIRLab.

An image from the Dark Energy Camera (DECam) shows a striking celestial sight: the Southern Pinwheel Galaxy, a gorgeous face-on galaxy that is one of the closest and brightest barred spiral galaxies in the sky. Also known as Messier 83, the galaxy is bright enough that it can even be seen with binoculars, but this image from a 4-meter Víctor M. Blanco Telescope shows the kind of stunning detail that can be picked out using a powerful instrument.

"This image shows Messier 83’s well-defined spiral arms, filled with pink clouds of hydrogen gas where new stars are forming," explains NOIRLab from the National Science Foundation, which released the image. "Interspersed amongst these pink regions are bright blue clusters of hot, young stars whose ultraviolet radiation has blown away the surrounding gas. At the galaxy’s core, a yellow central bulge is composed of older stars, and a weak bar connects the spiral arms through the center, funneling gas from the outer regions toward the core. DECam’s high sensitivity captures Messier 83’s extended halo, and myriad more distant galaxies in the background."

Read more
Watch SpaceX fire up Starship spacecraft engines ahead of 7th test flight
SpaceX performing a static fire test of its Starship rocket in December 2024.

SpaceX has shared a video (below) showing a static fire test of its Starship spacecraft at the spaceflight company’s Starbase site near Boca Chica, Texas.

https://x.com/SpaceX/status/1868436135468552361

Read more
Watch the space station send the first wooden satellite into orbit
Japan's LignoSat being deployed from the ISS.

The world’s first wooden satellite has been deployed to Earth orbit from the International Space Station (ISS). The ISS Research X account posted footage of a trio of CubeSats, including Japan’s LignoSat, recently emerging from the orbital outpost into the vacuum of space.

https://x.com/ISS_Research/status/1867711109983039958

Read more