Skip to main content

Bright young star shoots out strange fan of material in Hubble image

The lifecycle of stars is dramatic, from the collapsing of clouds of dust and gas under gravitational pressures to form protostars, to the explosive end of massive stars which erupt as supernovae. Massive stars heavier than our sun are particularly dramatic, eventually puffing up to become red supergiants as they come to the ends of their lives before finishing up as black holes or neutron stars. But massive stars can go through epic changes when they are in their younger years as well, as this week’s image from the Hubble Space Telescope shows.

The image is of a bright, young, massive star surrounded by a stunning structure of dust and gas. The object is called IRAS 05506+2414, and is located more than 9,000 light-years away from Earth in the constellation of Taurus. And its swirling shape seems to have been created by a disruptive event in the life of this young star.

A shroud of thick gas and dust surrounds a bright young star.
A shroud of thick gas and dust surrounds a bright young star in this image from the NASA/ESA Hubble Space Telescope. Hubble’s Wide Field Camera 3 inspected a young stellar object, over 9,000 light-years away in the constellation Taurus, to help astronomers understand the earliest stages in the lives of massive stars. This object – which is known to astronomers as IRAS 05506+2414 – may be an example of an explosive event caused by the disruption of a massive young star system. ESA/Hubble & NASA, R. Sahai

“The swirling discs of material surrounding a young star are usually funneled into twin outflows of gas and dust from the star,” Hubble scientists write. “In the case of IRAS 05506+2414, however, a fan-like spray of material traveling at velocities of up to 217 miles per second (350 km per second) is spreading outwards from the center of this image.”

Recommended Videos

According to a paper from 2008, the outflows of material in IRAS 05506+2414 could be similar to the “bullets” of gas seen shooting out of the Orion nebula. These bullets appear small from a distance, but are actually around the size of our solar system and are zipping away from the center of the nebula at a tremendous speed of 250 miles or 400 kilometers per second. First seen in 1983, the Orion bullets remain something of a mystery, though they are brightly visible in images because the iron atoms at the tips of each bullet get so hot from the friction of their movements that they glow due to their 5000°C (9,000°F) temperatures.

The case of IRAS 05506+2414 is unusual, according to another paper from 2017, because other young stars throw out twin jets of materials like those seen in Herbig-Haro objects. The fans of material given off by this star are very different and scientists are still researching how the star system could have been disrupted to cause this result.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble takes first image since switching to new pointing mode
This NASA Hubble Space Telescope features the galaxy NGC 1546.

This NASA Hubble Space Telescope captured an image of the galaxy NGC 1546. NASA, ESA, STScI, David Thilker (JHU)

The Hubble Space Telescope has been through some troubles of late, and the way that it operates had to be changed recently to compensate for some degraded hardware. The telescope's three gyros, which help it to switch between different targets in the sky, have been experiencing issues, with one in particular frequently failing over recent months. NASA made the decision recently to change the way that Hubble points, and it now uses just one gyro at a time instead of all three in order to preserve the two remaining gyros for as long as possible.

Read more
Gorgeous Webb image of Serpens Nebula shows a strange alignment
This image shows the centre of the Serpens Nebula as seen by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam).

The Serpens Nebula, located 1,300 light-years from Earth, is home to a particularly dense cluster of newly forming stars (about 100,000 years old), some of which will eventually grow to the mass of our Sun. Webb’s image of this nebula revealed a grouping of aligned protostellar outflows (seen in the top left). These jets are identified by bright clumpy streaks that appear red, which are shock waves caused when the jet hits the surrounding gas and dust. NASA, ESA, CSA, STScI, K. Pontoppidan (NASA’s Jet Propulsion Laboratory), J. Green (Space Telescope Science Institute)

This stunning new image from the James Webb Space Telescope shows the famous Serpens Nebula, a dense star-forming region where new stars are being born amid clouds of dust and gas. Unlike some other nebulae, which are illuminated by radiation from stars that causes them to glow, this is a type called a reflection nebula, so it only shines due to the light that reflects from other sources.

Read more
Well-known star turns out to be not one star, but twins
This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles.

This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles. U.S. NSF/NSF NRAO/B. Saxton

There are some regions and objects that become favorite targets for astronomers -- often because they are nearby (and so easier to observe) and because they are a well-known example of an object like a stellar nursery or a black hole. But occasionally, even these well-known objects turn out to be hiding surprises. This was the case recently, when observations from the James Webb Space Telescope revealed that a particular star, WL 20S, in the frequently observed WL20 region, turned out not to be a single star at all, but actually a pair.

Read more