Skip to main content

NASA project turns images of space into music you can play

For several years, NASA has been producing sonifications in which images of space are turned into soundscapes so that they can be enjoyed both by people who are vision impaired and by a general audience who are interested in experiencing space in a new way. Now, NASA has taken this concept one step further by turning an image of space into an original composition to be performed by a group of musicians.

The image used as the basis for the compositions is of the center of the Milky Way galaxy, a bustling region of gas filaments, X-rays, and a supermassive black hole called Sagittarius A*. The image combines data from Chandra, Hubble, and Spritzer to bring together data from the X-ray, visible light, and infrared wavelengths.

The Galactic Center sonification, using data from NASA’s Chandra, Hubble and Spitzer space telescopes, has been translated into a new composition with sheet music and score. Working with a composer, this soundscape can be played by musicians.
The Galactic Center sonification, using data from NASA’s Chandra, Hubble and Spitzer space telescopes, has been translated into a new composition with sheet music and score. Working with a composer, this soundscape can be played by musicians. Credit: Composition: NASA/CXC/SAO/Sophie Kastner: Data: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; IR: Spitzer NASA/JPL-Caltech; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida); Video Credit: NASA/CXC/A. Jubett & P. David

The project brought in composer Sophie Kastner to interpret the image into sheet music for instruments including strings, piano, flue, clarinet, and percussion.

Recommended Videos

“It’s like a writing a fictional story that is largely based on real facts,” said Kastner in a statement. “We are taking the data from space that has been translated into sound and putting a new and human twist on it.”

Kastner said she drew inspiration by focusing on portions of the image and creating soundscapes that reflected the contents of each region. “I like to think of it as creating short vignettes of the data, and approaching it almost as if I was writing a film score for the image,” said Kastner. “I wanted to draw listener’s attention to smaller events in the greater data set.”

Universe of Sound: Data to Music Translation

The Chandra team that has been working on the sonifications described the setting of the image to music as an extension of their work making space images accessible and intriguing to all.

“We’ve been working with these data, taken in X-ray, visible, and infrared light, for years,” said Kimberly Arcand, Chandra visualization and emerging technology scientist. “Translating these data into sound was a big step, and now with Sophie, we are again trying something completely new for us.”

This composition is a pilot, but the team hopes to create more compositions in the future inspired by other space images.

“In some ways, this is just another way for humans to interact with the night sky just as they have throughout recorded history,” says Arcand. “We are using different tools, but the concept of being inspired by the heavens to make art remains the same.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more
NASA can now talk to its spacecraft using lasers
NASA’s Psyche spacecraft is depicted receiving a laser signal from the Deep Space Optical Communications uplink ground station at JPL’s Table Mountain Facility in this artist’s concept. The DSOC experiment consists of an uplink and downlink station, plus a flight laser transceiver flying with Psyche.

NASA has a communications problem: The radio frequencies used by spacecraft for communications are getting too busy. As more missions are sent into outer space, and as these missions carry increasingly sophisticated instruments, the amount of data that needs to be sent back to Earth is growing beyond the capacity of current radio communications systems.

The solution to this problem is to use higher frequencies, which can carry more data. But before any new communication system can be put into widespread use, it has to be tested.

Read more
NASA turns off another of Voyager 2’s instruments to save power
Engineers work on NASA’s Voyager 2 at JPL in March 1977, ahead of the spacecraft’s launch that August. The probe carries 10 science instruments, some of which have been turned off over the years to save power.

The venerable Voyager spacecrafts are now nearly 50 years old, and having headed out beyond the orbit of Pluto and into interstellar space, the pair are the most distant man-made objects in the universe. But despite their incredible longevity and success, they are inevitably running low on power, so their operations have to be tweaked from the ground to enable them to run for as long as possible. Recently, NASA announced that it is turning off another of Voyager 2's science instruments to help maintain power for longer.

The command was sent to turn off Voyager 2's plasma science instrument on September 26, but the spacecraft is now so far away that it took 19 hours for the signal to leave Earth and arrive at Voyager, and a further 19 hours for the confirmation signal to arrive back at Earth. The operation went smoothly, according to NASA.

Read more