Skip to main content

You can help teach NASA rovers to explore Mars with the AI4Mars project

Artificial intelligence could be a huge help to Mars rovers like NASA’s Curiosity or Perseverance, but first these A.I. systems need to be trained on what to look for. A NASA project invites members of the public to help identify features of the Martian landscape, in order to train an algorithm that future rovers could use to navigate around the red planet.

The robotic arm of NASA’s Perseverance rover is visible in this image used by the AI4Mars project.
The robotic arm of NASA’s Perseverance rover is visible in this image used by the AI4Mars project. Users outline and identify different rock and landscape features to help train an artificial intelligence algorithm that will help improve the capabilities of Mars rovers. NASA/JPL-Caltech

The AI4Mars project was launched last year, and users have already labeled nearly half a million images to help develop the Soil Property and Object Classification (SPOC) algorithm. This algorithm identifies features of the landscape like sand and rock, and does so correctly nearly 98% of the time. In the future, this algorithm could be incorporated into Mars rovers’ autonomous driving capabilities like the AutoNav technology used by Perseverance.

Recommended Videos

Now, the researchers want to expand SPOC to get more detailed information about rock formations such as the presence of float rocks or nodules. By automatically classifying the types of rock imaged by rovers, the researchers can send driving instructions back to the rovers more quickly.

“It’s not possible for any one scientist to look at all the downlinked images with scrutiny in such a short amount of time, every single day,” explained Vivian Sun, a JPL scientist who helps coordinate Perseverance’s daily operations and consulted on the AI4Mars project. “It would save us time if there was an algorithm that could say, ‘I think I saw rock veins or nodules over here,’ and then the science team can look at those areas with more detail.”

To help develop this algorithm, NASA is inviting members of the public to go to the AI4Mars page on Zooniverse and look at images of the Martian surface captured by the Curiosity rover. They are asked to draw polygons around particular features like sand, soil, bedrock, and large rocks. The results of thousands of classifications made by the public are then collated and checked by scientists to make sure that the labeling is accurate.

Over time, as more individual pieces of data are labeled, the algorithm can learn to distinguish features for itself.

“Machine learning is very different from normal software,” said lead researcher for the AI4Mars project, Hiro Ono. “This isn’t like making something from scratch. Think of it as starting with a new brain. More of the effort here is getting a good dataset to teach that brain and massaging the data so it will be better learned.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA selects 9 companies to work on low-cost Mars projects
This mosaic is made up of more than 100 images captured by NASA’s Viking 1 orbiter, which operated around Mars from 1976 to 1980. The scar across the center of the planet is the vast Valles Marineris canyon system.

NASA is expanding its plans for Mars, looking at not only a big, high-budget, long-term project to bring back a sample from Mars but also smaller, lower-cost missions to enable exploration of the red planet. The agency recently announced it has selected nine private companies that will perform a total of 12 studies into small-scale projects for enabling Mars science.

The companies include big names in aerospace like Lockheed Martin and United Launch Services, but also smaller companies like Redwire Space and Astrobotic, which recently landed on the surface of the moon. Each project will get a 12-week study to be completed this summer, with NASA looking at the results to see if it will incorporate any of the ideas into its future Mars exploration plans.

Read more
NASA is looking for volunteers for yearlong simulated Mars mission
The CHAPEA mission 1 crew (from left: Nathan Jones, Ross Brockwell, Kelly Haston, Anca Selariu) exit a prototype of a pressurized rover and make their way to the CHAPEA facility ahead of their entry into the habitat on June 25, 2023.

If you've ever wanted to visit Mars, then NASA has an offer for you. Though the agency isn't sending humans to the red planet quite yet, it is preparing for a future crewed Mars mission by creating a simulated mission here on Earth -- and it's looking for volunteers.

Simulated missions look at people's psychological and health responses to conditions similar to what astronauts would experience on a deep space mission. In the case of the Mars mission, called Crew Health and Performance Exploration Analog or CHAPEA, the aim is to simulate a Martian environment using a 3D-printed habitat and a set of Mars-related tasks that crew members must perform.

Read more
NASA’s damaged Ingenuity helicopter spotted in Mars rover photo
A Mars landscape with NASA's Ingenuity helicopter in the background.

A Mars landscape with NASA's Ingenuity helicopter seen on the dune in the distance. NASA/JPL-Caltech/ASU

NASA’s Mars rover, Perseverance, has captured an image (above) showing the final resting place of the damaged Mars helicopter, Ingenuity.

Read more